
What is mSoap?

mSoap is a SOAP client library for Java ME (J2ME) designed for use with the
now aged GLUE SOAP server library. However it is the authors hope and goal
that it will work well with most SOAP servers out there. mSoap is released by
Machina Networks AS under the GPL version 2 or later.

Using mSOAP

SOAP calls are performed in msoap by asking a transporter (currently only
HTTPTransport exists) to create a soap call based on an SOAPEnvelope object.
The transport then makes the soap call and returs a new SOAPEnvelope which
contains the results. This documents descibes the most common steps that are
needed to make simple and complex SOAP requests

Requirements

mSoap requires CLDC 1.1 and MIDP 1.0. The reason for the rather harsh CLDC
1.1 requirement is that mSoap’s support for double primitive type depends on
the existence of java.lang.Double. This is likely to be remidied in a future relese.
In the mean time it should be a relatively simple task to remove all references
to double and recompile mSoap.

Simple SOAP requests

A simple soap request is defined as a SOAP request which contains only primi-
tive values. There is a complete example of a simple request in no.machina.msoapapi.examples.WhoIsMidlet.

The firs step is as allways to get a new SOAPEnvelope object and set the
method and namespace. The Method will be the name of the first tag after the
body tag when the enveope is serialized and should indicate to the webservice
exatcly which service you are trying to reach. The namespace is the namespace
that the method can be found in.

//First a SOAP envelope must be created. Every SOAP call needs
one without exception
SOAPEnvelope se = new SOAPEnvelope();

//Every SOAPenvelope needs a namespace. This is the target namespace
found in the WSDL file or elsewhere
se.setNameSpace("http://somenamespace.example.com");

//The soap method to be called
se.setMethod("ExampleMethod");

1



When the envelope is created it will useally have to be filled with parameters.
In this simple example we will add one string and one integer, se the section on
supported primitives for a list of supported primitives. The name part of the
methods to add the primitive determines wath the name of the value will be
once it’s serialized.

se.addString("arg0", "example parameter");
se.addInt("arg1", new Integer(5)

Then it is time to send the request. For this we need a transport. mSoap
comes with one such transport, HTTPTransport. It’s constructor takes two
arguments, a boolean value indicating wheter or not it should try to keep sessions
alive by returning cookies to the site in subsequent requests and the URL to
the web service the transport will send all requests.

//A transport is nessesary to do the actual SOAP method call. HTTPTransport
is the only one currently available.
HTTPTransport tansport = new HTTPTransport(false, "http://example.com/service");

//Makes the actual transport call wich returna a new envelope
SOAPEnvelope resultEnvelope = tansport.request(se);

//Any well behaved resultEnvelope has a response object
SOAPObject response = resultEnvelope.getResult();

And that’s it. ”response” can be used to get all information that is found in
the body of the soap envelope, any other information cvan be reached through
the envelope itself.

Complex soap requests

The only difference between a simple and complex soap request is that a complex
request contains a parameter that is not a primitive. These object myst imple-
ment the interface SOAPObject so that it can be serialzed and created by the
mSoap serializers and parsers. Some simple exaples of such classes can befound
in the package no.machina.msoapapi.examples.AmazoneClasses. These classes
are used in no.machina.msoapapi.examples.BookInfo. In order for the parser
to return custom object the object must first be registered with the requesting
envelope (the register will be copied to the result enveope by the transport).
This is done like so:

se.registerClass(new customSOAPObject().getClass(), "nameSpace",
"type");

If you are connecting to a webservice that returns in the document/literal
style/encoding, the namespace must be a empty String.

2



Supported primitives

• int

• long

• double

• decimal

• string

Credits

The mSoap distribution includes a binary version of kXML. For more informa-
tion on kXML see http://kxml.sourceforge.net/.

Future enhacements

• Add support for compressed streams.

• Add support for binary xml formats.

• Create a tool to make SOAPObjects out of objects in a WSDL.

• Fix all the bugs that are left and make the api simpler and make the code
better and faster and make better documentation. In general, everything
will hopefully be improved.

3


